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SUMMARY 

This paper presents the analysis of the flapwise natural bending 
frequencies and mode shapes of rotor blades with two flapping hinges 
located at arbitrary blade radii. The equations of motion are derived 
for a blade of variable mass and stiffness distribution. Solutions to 
the equations (natural frequencies and mode shapes) are presented for 
a typical blade of constant cross section having a wide range of hinge 
locations. 

The results show that the natural frequencies of the blades can be 
changed appreciably by varying the locations of the blade hinges, and 
that with two properly located flapping hinges, blade designs are possi- 
ble which eliminate or greatly reduce conditions of resonance between the 
blade natural frequencies and the frequencies of the harmonic air loads. 
The results also s h o w  that ratios of natural frequency to rotor speed 
below a value of 6.0 are essentially constant for variations in rotor 
speed consistent with helicopter and VTOL applications. 

INTRODUCTION 

Excessive vibrations in rotor craft have been cited as a major prob- 
lem for many years. Currently, many operational helicopters have vibra- 
tion levels which are too high for sustained fatigue-free operation, and 
others are penalized by having to carry the excess weight and mechanical 
complexity of tuned vibration dampers to hold the vibrations down to 
acceptable levels. 

Although rotor craft are subject to several types of self-excited 
vibrations, the vibrations of primary concern are the forced vibrations 
which arise from the dynamic response of the structural components to 
the aerodynamic inputs. These inpcts arise as a result of the movement 
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of the  ro ta t ing  ro tor  through the  airstream and a re  transmitted t o  the  
s t ruc ture  proper through the  blades. 
t he r  consideration be given t o  the  nature and magnitude of the  aero- 
dynamic inputs and t o  the  select ion of blade designs having s t ruc tu ra l  
parameters which minimize adverse dynamic response. This paper deals 
with the  l a t t e r  problem, i n  t h a t  it presents a general method f o r  the  
var ia t ion of the flapwise na tura l  frequencies and mode shapes of the  
blades by the inclusion of multiple flapping hinges. An analysis  i s  
presented which t r e a t s  both the  r i g i d  and e l a s t i c  blade with two flap- 
ping hinges wherein the r ad ia l  locat ions of the  hinges and the spanwise 
d is t r ibu t ions  of mass and s t i f f n e s s  are completely general. The equa- 
t i ons  of motion are derived, and the na tura l  frequencies and mode 
shapes a r e  calculated f o r  a blade of constant cross section fo r  a wide 
range of flapping hinge locat ions and ro to r  speeds. 

Thus, it seems expedient t h a t  fur- 

SYMBOLS 

r a t i o  of spanwise locat ion of i t h  flapping hinge t o  blade 
radius, measured along undeformed blade 

ai 

generalized coordinate f o r  e l a s t i c  bending-of i t h  blade seg- 
ment, i n .  

b i  

blade flapwise bending s t i f f n e s s  d i s t r ibu t ion  on i t h  blade 
2 

(E1 1 i 
segment, lb- i n .  

L 
8 
7 
5 

f i r s t  normal mode shape of i t h  blade segment when t r ea t ed  as 
a nonrotating beam with simply supported o r  hinged-hinged 
ends 

f i 

i 

J,P 

m i  

m i O  

integer  used t o  denote blade segment 

integer  used as an index i n  summations 

mass per un i t  length of i t h  blade segment, lb-sec2/in. 

value of mi a t  inboard end of i t h  blade segment, 

2 

2 lb-sec*/in. L 
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R 

t 

T 

Ti 

*, Y, Z 
Z 

A 

Ti 

CD 

% 

R 

an integer used to denote mode number 

number of blades 

coordinate of blade element measured radially from center of 
rotor, in. 

blade radius, in. 

time, sec 

total kinetic energy, lb-in. 

contribution of ith blade segment to total kinetic energy, 
lb- in. 

elastic deformation of ith blade segment in z-direction, in. 

total potential energy, lb-in. 

contribution of ith blade segment to total potential energy, 
lb- in. 

Cartesian coordinates, in. 

total blade displacement in z-direction, normalized to maxi- 
mum value 

incremental change 

coordinate of blade element in ith blade segment, measured 
from its inboard end, in. 

first natural frequency of nonrotating, hinged-hinged beam 
(corresponds to mode shape fi), radians/sec 

generalized coordinate or flapping angle of ith blade segment 
with respect to (i - 1)th segment 

frequency of oscillation, radians/sec 

nth natural frequency of rotating blade, radians/sec 

rotor angdar velocity, radians/sec 
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Subscripts : 

E elastic 

R rigid 

Dots over symbols denote differentiation with respect to time; 
primes denote differentiation with respect to r. 

ANALYSIS 

Derivation of the Equations of Motion 

L 
8 
7 
5 

The coordinate system fo r  the two-hinge elastic-segment blade is 
shown in figure 1. The x,y,z coordinate system is fixed in space and 
the position of a blade element of segment i (i = 0, 1, or 2) is 
given by 

xi = (r - &ri)cos Rt (la 1 

where r 
undeformed blade, 
ment and the nearest inboard segment, is the distance the ith ele- 
ment moves toward the center of the rotor due to rotation and translation 
of the element as the blade deforms, and is the elastic deformation 
of the ith blade segment in the z-direction. The inwardmovements of the 
elements of the respective blade sewents are then given for small dis- 
placements by 

is the radial location of a blade element measured along the 

Ari 
'pi is the flapping angle between the ith blade seg- 

3 

Aro = 0 (2a) S 

. 
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The deformation y(r,t) can be represented by a summation of prod- 
ucts of functions of time bijlt) and deflection shapes fij(r), that 

bij(t)fij(r). For purposes of this investigation, 

only one term in the summation was used and upon dropping the second 
subscript, 
rotating beam identical to the ith blade segment simply supported at 
its ends (hereinafter referred to as hinged-hinged) . 
bi(t) is then a generalized coordinate. Thus 

is, Ui(r,t) i 
j =1 

fi(r) was chosen as the first normal mode shape of a non- 

The quantity 

q(r,t) bi(t)fi(r) bifi ( 3 )  

and 

The positions of the elements of the respective blade segments in 
the coordinate system are given by substitution of the proper expressions 

into equations (2) and the resulting expressions f o r  for 

into equations (1). For example, 
Ari 

sui ( r, t 1 
ar 

r - 1 ]as('pl + blfi') 2 dr 
2 x2 = (r - Ar2)cos Rt = 

a1R 

a,R 
cos Rt (a$<= r 5 R) 

The kinetic and potential energies of each blade segment may now 
be calculated and summed to obtain the total kinetic energy T, that is, 

T = To + Ti + T2 (58) 
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7 
E , 

and the total potential energy V 

At this point, the straightforward approach would be to calculate 
the three components of deflection for each blade segment, differentiate 
and integrate as indicated in equations (5c) and (6b), and thus obtain 
the complete energy expressions. However, a better approach which will 
considerably simplify the problem is to apply Lagrange's equation at 
this stage, that is, to derive the equations of motion in symbolic form. 
Thus for each generalized coordinate represented by qs the following 
equation is derived: 

* 

where qs denotes any one of the generalized coordinates 'pl, 'p2, bl, 
or b2. Then 



7 

and 

dr 

dr 

The integrals in equation (8c) are given in terms of the radial 
distribution of the blade flexural rigidity 
tives of the flexural deformation f. 
written in terms of the natural frequencies of the nonrotating hinged- 
hinged segments having the mass distributions 
tions f, that is, 

EI, and the second deriva- 
These integrals may also be 

m and the modal deforma- 
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and 

This form is useful in that the potential energy in equation (8c) can 
be written in terms of the more readily determined quantities 
and mi rather than (EI)i and fit’. This substitution is used in 

cli, fi, 

the remainder of the report. I 
f 
7 

after appropriate differentiations and rearrangement, and with only , E 

linear terms retained are: 

The equations of motion for the respective generalized coordinates, 

1 r- 
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9 

7 
5 

Equations (9) are now written in matrix form. For convenience, the 
integrals contained in each square bracket of equations (9) have been 
nondimensionalized and expressed in terms of coefficients A l l ,  Bll, 
and so forth. 
and (9b) were divided by . Q % ~ ~ R ~  and equations (9c) and (9d) were 

divided by 0% R2 It is also assumed that the blade motions are 

harmonic. The resulting equation is 

In order to nondimensionalize the integrals, equations (9s) 

10 

b 



10 

- ($3122 - ( $ 3 2 9 2  
0 

- (&3 

0 + E33 + F33h2 0 

2 

+ (;) A33 

0 + F44h2 
+ F14h2 + F14h2 2 

+ (F) B a h z  

'p1 

'p2 

b l / R  

b2/R 

Note t h a t  the  coef f ic ien ts  A l l ,  B11, and so f o r t h  of equation (10) 
are completely general with respect t o  the  mass and s t i f f n e s s  dis t r ibu-  
t ions  and the  hinged-hinged mode shapes of t h e  segments. 
some expressions f o r  the  coef f ic ien ts  are: 

For example, 
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Evaluation of Coefficients f o r  Uniform Segments 

If the  mass and stiff 'ness d is t r ibu t ions  of each segment are con- 
stant throughout i t s  length, the  f i r s t  natural-mode shapes f o r  e l a s t i c  
bending of t h e  hinged-hinged segments are given by 

fir dr can be expressed as Sa2R Then, fo r  example, the  in t eg ra l  

follows : 
a 1 R  

The coef f ic ien ts  of t he  matrix (eq. (10))  are given by the  fol-  
lowing expressions: 
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- (a - 1) A33 - 2 L 
8 

ml) B22 = 5 - 
1 

e 



F~~ = 1 (1 - aal)(l - $ a1 + &al - 3 2  aal + .‘a:) 

1 1 2 2’, 
F12 = (1 - aal)(l - aal - 2 a al, 

F13 = 0 

F44 = g [=1(2 + $) + (4 - 4 

DISCUSSION OF RESULTS 

This section of the report treats both the rigid-segment blade 
(bl = b2 = 0) and the flexible-segment blade to determine (a) the vari- 
tion of natural frequencies with rotor speed, (b) the variation of the 
natural frequencies with hinge locations, (c) a comparison of the natural 
frequencies of the flexible-segment blade with those of the rigid-segment 
blade, and (d) the effect of rotor speed and hinge locations on the nat- 
ural mode shapes. 

For purposes of illustration, it was assumed in obtaining the cal- 
culated results subsequently presented that the mass and stiffness dis- 
tributions are uniform throughout the length of the blade outboard of 
the inboard flapping hinge, and the values used 
(m1 = 9 = 0.6 x 10-3 lb- sec2, , (EI)l = (EI), = 3.15 X 10 6 lb-in.2; 

in2 
and R = 210 in. are typical of those of a medium-size helicopter. 
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1 
2 
1 
2 
1 
2 

Rigid- Segment Blade 

50.442 
- .464 
20.389 
- .378 
7.067 - ,400 

The natural frequencies of the rigid-segment blade are obtained by 
the vanishing of the determinant of the submatrix formed by eliminating 
the third and fourth rows and third and fourth columns of equation (10). 
The natural frequencies of the resulting two-degree-of-freedom system 
for a blade of uniform cross section are given in table I. The frequency 
ratio, obtained by dividing by the rotor speed, is also plotted as a 
function of hinge locations in figure 2 where the abscissa is the radial 
location of the second hinge point. Calculations are presented for 
inboard hinge locations of 4 percent, 10 percent, and 30 percent of the L 
radius. 8 

7 
One of the significant features of the multihinged rigid-segment 5 

. 

blade is that the natural frequency of a given mode is always a constant 
multiple of the rotor speed and consequently blade designs are possible 
which w i l l  eliminate conditions of resonance between the blade natural 
frequencies and the frequencies of t k  harmonic aerodynamic loads as the 
rotor speed is varied. 

0.04 
.04 
.10 
.10 
30 

* 30 

The mode shapes for the rigid-segment blade are obtained by substi- 
tution of the natural frequencies or roots presented in table I back 
into either of the first two equations of the submatrix and solving for 
the ratio 'p1/'p2. This ratio, which is independent of rotor speed, was 
calculated for several practical hinge configurations and the results 
are presented in the following table: 

0.40 
.40 
-50 
-50 
-60 
.60 

I 
1.031 
3.018 
1.087) 
3.050 
1 * 279 
3.615 

The two mode shapes for the configuration where 
a2 = 0.40 are plotted in figure 3. 

a1 = 0.04 and 

Figure 3 shows that the blade segments aline themselves during 
vibration in a manner which resembles the flapping and first elastic 
bending modes of a conventional rotor. However, the radial locations 
of the node and antinode for the second mode are directly dependent on 
the hinge locations and move toward the tip as a2 approaches unity. 

c 
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If the  f l e x i b i l i t i e s  of the  various segments of a ro to r  blade with 
two flapping hinges are neglected, the system, as shown i n  the  previous 
section, reduces t o  a two-degree-of-freedom system. Thus, two na tura l  
modes with t h e i r  associated na tura l  frequencies a r e  obtained. If, how- 
ever, the  segments a re  considered t o  be f lex ib le ,  two primary e f f ec t s  
result. The f i rs t  e f f ec t  i s  t h a t  addi t ional  degrees of freedom are 
obtained, the  number of which i s  equal t o  twice the  number of e l a s t i c  
modes of deformation assumed f o r  each segment. The coupling of these 
addi t ional  degrees of freedom with the  flapping modes results i n  higher 
na tura l  modes and frequencies of the blade. 

A second result i s  t h a t  the na tura l  fqequencies of the lower two 
modes, which a re  const i tuted primarily of flapping of the  blade segments 
about the  hinges, are subject t o  change. The e f f e c t  of f l e x i b i l i t y  of 
the segments on the  lower frequencies can then be observed f o r  any con- 
f igura t ion  of hinge locat ions by comparing the  f i rs t  two na tura l  f re-  
quencies of t he  f lexible-  segment blade with tk respective frequencies 
f o r  t he  rigid-segment blade. 

The study made i n  the  present paper treats the  case where each 
blade segment i s  permitted one degree of freedom i n  flexure defined by 
the  f i rs t  na tura l  mode of t he  appropriate hinged-hinged segment. The 
four  na tura l  frequencies f o r  the  blade, as w e l l  as the  frequency r a t i o s  
obtained by dividing by the ro to r  speed, a r e  presented i n  t ab le  I1 f o r  
various ro to r  speeds and hinge locat ions.  The r a t i o s  of t he  na tura l  
frequencies t o  the  ro to r  speed f o r  the  f i r s t  three  modes are p lo t ted  
i n  f igures  4. 
above t h e  values of p r a c t i c a l  i n t e r e s t  i n  ro to r  design (see t ab le  11) 
and are therefore omitted from the  f igures .  

The natura l  frequencies f o r  the  fourth mode a re  generally 

A comparison of t he  frequency curves presented i n  f igures  4 shows 
t h a t  the r a t i o  of u1/R i s  independent of e i t h e r  ro to r  speed o r  t he  
spanwise locat ion of the  outboard hinge but  increases as the  inboard 
hinge i s  moved outward. I n  the  case of t he  second mode, a small depend- 
ence of UQ/R on both ro to r  speed and hinge locat ions i s  shown. The 

frequency ratio i s  increased as the  ro to r  speed i s  reduced and a l so  as 
the  second hinge locat ion i s  moved i n  e i t h e r  d i rec t ion  from the point 
where t h e  outer  two segments of t h e  blade are of approximately equal 
length.  The frequencies of t h e  second mode are a l so  increased as the  
inboard hinge i s  moved toward t h e  blade t i p .  
the  na tura l  frequencies for  the  t h i r d  mode are highly dependent on both 
the  hinge locat ions and the  ro to r  speed. 

Figure 4 a l s o  shows t h a t  

From flight-operations experience, aerodynamic exc i ta t ions  have 
been found t o  occur a t  integer  multiples of the  ro to r  speed, and the  
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excitations are more severe when the integer is a lower multiple of the 
number of blades. Thus, in order to minimize structural amplifications 
due to resonance, it is desirable to choose the hinge locations so that 
resonant frequencies are avoided. 
rotor, for example, one should select a value of a1 as large as possi- 
ble (consistent with rotor moment requirements for stability and control) 

In consideration of the two-blade 

'u2 to raise the natural frequency of the second mode so that 3 < - < 4 R 
and to choose a value of a2 such that (I) R is both as high and as 
far removed from integer values as possible. 

. 
31 

For helicopter applications and for the blade parameters selected, 
R = 30. Thus, it appears that desirable values for a1 and a2 for 
blades having the chosen values of E1 and m would be 0.30 and 0.54, 
respectively. For VTOL applications, it may be desirable to vary the 
rotor speed substantially during the flight, and in this case it would 
be desirable to select hinge configurations which minimize resonance 
conditions at lower rotor harmonics throughout the range of rotor speeds. 
These conditions also suggest a large value of al, perhaps 0.23, and a 
value of a2 of about 0.80. Although it may be impossible to avoid 
some resonances involving the third-mode natural frequencies during the 
variations of rotor speed, at least they occur at higher harmonics where 
the excitation forces are usually small. 

L 
8 
7 
5 

For design purposes, primary concern is usually exercised over the 
natural frequencies in the neighborhood of the first two modes. The 
problem of calculating the natural frequencies for the rigid-segment 
blade is relatively simple, and the question of accounting for the effects 
of rotor speed and segment elasticity are then of interest. The effects 
of these variables on the natural frequencies of the first two modes are 
shown in figure 5 where the ratios of the natural frequencies for the 
elastic-segment blade to the frequencies for the rigid-segment blade 
( u&/(W~)~ where The curves show that 

no perceptible differences exist for the first mode but that the second- 
mode frequencies of the elastic-segment blade may be substantially less 
than those for the rigid-segment blade, particularly for high rotor 
speeds and for outboard hinge locations for which the ratios of the 
lengths of the hinged segments are substantially different from unity. 
The effect of inboard hinge location is small. For helicopter applica- 
tions and for hinged segments of approximately equal length, the second 
natural frequency for the elastic-segment blade is approximately 94 per- 
cent of the value predicted for the rigid-segment blade. 

r 

n = 1 and 2 are presented. 

The modal coefficients for some typical cases for the elastic- . 
segment blade are presented in table 111, and the four modes are plotted 
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for a typical configuration in figure 6. 
deformations of the blade as a result of rotations of the blade segments 
about the hinges, and the vertical distances between the solid and dashed 
lines indicate the deformations due to elastic bending. If the inboard 
hinge is considered as a node, the curves show that the modal number is 
equal to the number of nodes. It may also be noted that the higher blade 
elastic defomtions for the lower modes occur on the outboard sement. 

The dashed lines indicate the 

CONCLUDING RFSIARKS 
L 
8 
7 
5 

A method of analysis is presented and applied to the determination 

The equations of motion are derived and put in matrix 
of the natural frequencies and mode shapes of rotor blades having two 
flapping hinges. 
form for the general case of a rotor blade having any radial variation 
of mass, stiffness, and/or hinge locations. 

The results of this study indicate that the ratios of the natural 
flapwise bending frequencies of the rotor blade to the rotor speed 

may be substantially controlled by proper choice of hinge locations. 
fact one of the significant features of the rigid-segment blade is that 
the natural frequency of a given mode is always a constant multiple of 
the rotor speed and consequently blade designs are possible which will 
eliminate conditions of resonance between the blade natural frequencies 
and the frequencies of the harmonic loads as the rotor speed is varied. 
The results of the study a l s o  show that for the elastic-segment blade 
both q / R  and uz/il are essentially independent of rotor speed for 
realistic hinge configurations. When the outboard hinge was situated 
about half way between the inboard hinge and the blade tip, it was 
found f o r  the example case treated that the natural frequency for the 
second mode of the elastic-segment blade was only about 3 to 6 percent 
lower than the value obtained when the blade segments were assumed to 
be rigid. 

un/n 
In 

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Field, Va., September 16, 1960. 
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F radians/sec 

TABLE I 

N m  FIEQUENCIES FOR TWO-HINGE RIGID-SEGMENT BLADE 

32 
8 

16 
24 
32 

24 
I 32 
1 8 

24 

8 I 16 

1 32 
! 8 
! 16 
i 24 

8 

16 

I ! 24 

1 32 

8 

32 
8 

16 
24 
32 
8 

24 
16 

32 
8 

16 
24 

0; 04 
.04 
.04 
.04 
.04 
.04 
.04 
.04 
.04 
.04 
.04 
.04 
.04 
.04 
.04 
.04 
.10 
.10 
.10 
.10 
.10 
.10 
.10 
.10 
.10 
.10 
.10 
.10 
.10 
.10 
.10 
.10 

, -30 
.30 . 30 
.30 
.30 
.30 
.30 
.30 
.30 
-30 
.30 
.Y 
.30 
.30 - 30 
.30 

L 

a2 

0.20 
.20 
.20 
.20 
.40 
.40 
.40 
.40 
.60 
.60 
.60 
.60 
.80 
.80 
.80 
.80 
.30 
.30 
-30 
-9 
.50 
.50 
.50 
-50 
-70 
.70 
* 70 
-70 
.90 
.90 
.90 
90 

.45 

.45 

.45 

.45 

.60 

.60 

.60 

.60 - 75 - 75 
-75 
.75 
* 90 
* 90 
-90 
* 90 

Y J  
radians/sec 

8.246 
16.492 
24.738 
32.984 
8.246 

16.492 
24.738 
32 983 
8.246 

16.492 
2 4 - 7 3  
32.984 
8.246 

16.492 
24.738 
32.985 
8.639 

17.278 

34 - 556 
8.639 

17.278 

3 .556  
8.640 

17.280 
25 9 s  
34.559 
8.641 

17.282 
25.922 
34.563 
10.237 
20.475 
30.712 
40.950 
10.235 
20.470 

40.940 
10.242 
20.484 
30.727 
40.969 
10.251 
20.503 
30 - 754 
41. OW 

25 * 917 

25 * 917 

30.705 

31.699 
63.399 
95.098 

126.797 
24.147 
48.294 
72.440 
96.587 
23.052 
46.104 
69.156 
92.208 
26.630 
53.261 
79.891 

106.522 
29.871 
59.743 
89.614 

119.486 

48.798 
73 * 197 
97.595 
24.619 
49.237 
73.856 
98.475 
Jc .460 
68.920 
103.91 
137.841 

72.856 
log. 283 
145.711 

57.847 
86.771 

115.695 
28.186 
56 - 372 
84.558 

112.744 
35 - 733 
71.466 

107 * 199 

24.399 

76.428 

28.924 

142.931 

"1 
n 

1.031 
1.031 
1.031 
1.031 
1.031 
1.031 
1.031 
1.031 
1.031 
1.031 
1.031 
1.031 
1.031 
1.031 
1.031 
1.031 
1.080 
1.080 
1.080 
1.080 
1,080 
1.080 
1.080 
1. oao 
1.080 
1.080 
1.080 
1.080 
1.080 
1.080 
1.080 
1.080 
1.280 
1.280 
1.280 
1.280 
1 279 
1 - 279 
1 - 279 
1 * 279 
1.280 
1.280 
1.280 
1.280 
1.281 
1.281 
1.281 
1.281 

"2 
R 

3.962 
J * 962 
3-962 
3.962 
3.018 
3.018 
3.018 
J .018 
2.881 
2.881 
2.881 
2.881 
3.329 
3.329 
3.329 
3.329 
3.734 
3.734 
3.734 
3.734 
3.050 
3.050 
3.050 
3.050 
3.077 
3.077 
3.077 
3.077 
4.308 
4.308 
4.308 
4.308 
4.553 
4.553 
4.553 
4.553 
3.615 
3.615 
3 - 615 
3.615 
3.523 
3.523 
3.523 
3.523 
4.467 

4.467 

4.467 
4.467 . 



1.20 
.20 
.20 
.20 
.LO 
.40 
.40 
.40 
.60 
.60 
.60 
.60 
.80 
.80 
.80 
.80 
-30 
-30 
-30 
.30 
.50 
.50 - 50 
.50 
.70 
-70 
.70 
.70 
.90 
.90 
.90 
.90 
.45 
.45 
.45 
.45 
.60~ 
.60 
.60, 
.60 
-75 
-75 
-75 
* 75 
.90 
-90 
.90 

TABLE I1 

NATURAL FREQUENCIES FOR TWO-HINGE ELASTIC-SEGMENT BLADE 

kl = m2 = 0.6 X -; (EI)l = (EI)2 = 3.15 X lo6 lb-in.2 1 in.2 L 

- 
22 a 

9, 
radians/se 

"1 n 
"2 a 

8 
16 
24 
32 
8 
16 
24 
32 
8 
16 
24 
32 
8 
16 
24 
32 
8 
16 
24 
32 
8 
16 
24 
32 
8 
16 
24 
32 
8 

24 
32 
8 

24 
32 
8 
16 
24 
32 
8 
16 
24 
32 
8 
16 
24 
32 

16 

16 

1.04 
.04 
.04 
.04 
.04 
.04 
.04 
.04 
.04 
.04 
.04 
.04 
.04 
.04 
.04 
.04 
.10 
.10 
.10 
.10 
.10 
.10 
.10 
.10 
.10 
.10 
.10 
.10 
.10 
.10 
.10 
.10 - 30 
* 30 - 30 
30 - 30 - 30 - 30 

-30 
* 30 - 30 
.30 
* 30 
-30 
* 30 - 30 
-30 

8.247 
16.492 
24.738 
32.982 
8.246 
16.492 
24 * 737 
33.001 
8.245 
16.492 
24 - 737 
32 - 983 
8.246 
16.494 
24.737 
32.983 
8.639 
17 - 277 
25 * 915 
34.553 
8 * 639 
17 277 
25.915 
34.553 
8.639 
17.278 
25 * 915 
34.553 
8.638 
17 279 
25 - 917 
34.557 

20.469 
30.696 
40.924 
10.234 
20.466 
30 695 
40.922 
10.238 
20.471 
30.700 
40.925 
10.268 
20.483 
30.708 
40.929 

10.239 

28. $1 
48.499 
67 - 157 
86.174 
23.675 
45.470 
65.787 
85.111 
22.618 
43.867 
64.%7 
84.598 
24.968 
45.577 
65.263 

28.200 
85.124 

50 * 773 

90 * 731 
70.845 

24.092 
46.906 
68.528 
89.503 
24.010 
46.137 
67.392 
88.477 
30.696 
51.013 
70 - 527 
90 - 727 
35 - 133 
64.569 
89.258 
112.396 
28.722 
56.438 
82.833 
108.147 
27.886 
54.527 
80.095 
105.160 
34.294 
62.235 
86.258 
109.865 

67.655 
104.210 
147.281 
192.015 
89.291 
107.683 
133.164 
163.784 
76.303 
100.865 
130.049 
159.958 
520.219 
801.762 

., 476.111 
78.178 
107.941 
145.945 

108.780 
125.110 
147.987 

97.008 
128.930 

86.108 
125.512 
165.. 778 
118.767 
147.778 
189.029 
235.969 
173 * 905 
188.242 
209.944 
237.138 

.,132.826 

186.713 

175 * 003 
71.007 

162.450 
51.441 

114.902 

172.609 
209.748 
76.654 
105.328 
143.921 
185.829 

139.417 

726.714 
759 - 000 
809.993 
876.464 
177.104 
2U. 480 
259 - 113 
313.685 
201.607 

248.417 
285.197 
714.500 
721.896 
7%. 083 
750.866 
485.783 
518.342 
568.578 
632.357 
166.941 
199.154 
244.210 
296.32l 
337.881 
350 - 328 
370.470 
397.487 

2,730.348 
2,733.814 
2,739.581 
2,747.6s 
849.358 
878 - 903 
926.099 
988.473 
271.864 
302.162 
347.213 

219 776 

402.202 
489.326 
500.446 
518.693 
543.646 

2,769.464 
2,773.048 
2,779 - 010 
2,787.339 

3.54: 
3 * 031 
2 - 79e 
2.69: 
2 - 959 
2.842 
2.741 
2.66a 
2.827 
2.742 
2.682 
2.644 
3 .121 
2.849 
2.719 
2.660 
5.525 
3.173 
2.952 
2.835 
3.011 

2.855 
2.797 
3 .001 
2 . 8 8 4  
2.808 
2.765 
3.837 
5.188 
2.939 
2.835 
4 392 
t . o s  
3.719 
3 * 512 
5.590 
J * 527 
3 - 451 
3.380 
5.486 
5.408 
5.337 
5.286 
c .287 
3 - 890 
5.594 
5.433 

2.932 

- 

8 * 457 
6 * 513 
6.137 
6.000 
1.161 
6.730 
5.549 
5.106 
9.538 
6.304 
5.419 
4.999 
5 027 
0.110 
7.201 
6.128 
9 - 772 
6.746 
6.081 
5.835 
3.597 
7.819 
6.166 
5.469 
8.876 
5.063 
5.372 
5 - 077 
6.430 
5.382 
5.230 
5.181 
4.846 
3.276 
7.876 
7.374 
1.738 
1.765 

7.411 
+.%3 
3.714 
7.192 
5.555 
3.582 
5.583 
5.997 
5 - 807 

5.748 

90.835 
47.437 
33.75( 
27.385 
22.13 
13.217 
10.796 
9.803 
25.201 
13.7% 
i o .  351 
8.91; 
89 31; 
45. l l f  

23.46: 
60.72: 
32.396 
23.691 
19.761 
20.86E 
12.447 
10.176 
9.26~ 
42.235 
21.895 
15.436 
12.421 
lc1.29: 
70.863 
14.150 
85.864 
06.170 
54 931 
38.588 
30.890 
33.983 
18.885 

12.569 
61.166 
31.278 

16.989 
46.183 

87. 104 

30 * 587 

14.467 

21.612 

73-35 
15 793 

1.031. 
1.031 
1.031 
1.031 
1.031 
1.031 
1.031 
1.031 
1.031 
1.031 
1.031 
1.031 
1.031 
1.031 
1.031 
1.031 
1.080 
1.080 
1.080 
1.080 
1.080 
1.080 
1.080 
1.080 
1.080 

1.080 
1.080 
1.080 
1.080 
1.080 
1.080 
1.280 
1 * 279 
1 279 
1 279 
1 - 279 
1 279 
1.279 
1.279 
1 - 277 
1 * 279 
1 - 279 
1 * 279 

1.080 

1.280 
1 - 279 
1 * 279 

. 
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TABU I11 

MODAL C O E F F I C I E N T S  FOR TWO-BINGE ELASTIC-SEGMENT BLADE 

0.04 
.04 
.04 
.04 
.04 
.04 
.04 
.04 
.04 
.04 
.04 
.04 
.04 
.04 
.04 
.04 
.1 
.1 
.1 
.1 
- 3  
- 3  
- 3  
- 3  

0.40 
.40 
.40 
.40 
.40 
.40 
.40 
.40 
.40 
.40 
.40 
.40 
.40 
.40 
.40 
.40 
50 

-50 
50 
50 

.60 

.60 

.60 

.60 

- 
R 

- 
8 
8 
8 
8 

16 
16 
16 
16 
24 
24 
24 
24 
32 
32 
32 
32 
32 
32 
32 
32 
32 
32 
32 
32 - 

8.246 
23 675 
89.291 
177.04 

107.683 
211.480 
24 9 737 
65 787 

133.164 
259 - 113 
33.001 
85.111 

163.384 
313.685 
9 .553  
89 503 

175 * 003 
296.321 
40.922 

108.147 
237 - 138 
402.202 

16.492 
45.470 

- 
n 

- 
1 
2 
3 
4 
1 
2 
3 
4 
1 
2 
3 
4 
1 
2 
3 
4 
1 
2 
3 
4 
1 
2 
3 
4 - 

q1 

q2 
- 

40.588 
- ,451 

- 12.807 
- -752 

48.194 
- .422 

-3.277 
- .747 

46.114 
- ,398 

-2.145 
- *743 

41.747 
- .381 

-1.786 
- .741 

-32.606 
- .324 

.380 
- .746 
7.615 
- 357 

,700 
- .754 

-0.005 
- .003 

- .018 
- .007 
- .644 

.381 
- .010 
- .027 
- .455 

365 - .031 
- .012 
- .400 

* 355 
.076 

- .017 
-383 
332 

- .027 
- .009 

357 
.269 

-2.327 
.402 

-0.011 

14.819 
- .016 

.272 
- .031 
- .048 
3.396 

.269 
- .&7 
- .076 

.267 
- .052 
- .og6 

-1.611 
.266 

- .085 
-.060 
- .983 - 352 - .025 
- .038 
-1.06: 

.261 

2.041 

1 
8 
7 
5 

. 
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Figure 3.- Representative mode shapes for two-hinge, rigid-segment blade. 
a1 = 0.04; a2 = 0.40. 
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1 I I First mode I 

I I I Secopd bode , 

I I 1 Third, mode 1 

I I Fourtp mode , - I  c 
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C 

Figure 6.- Representative mode shapes for two-hinge elastic-segment 
blade. a1 = 0.04; a = 10. 
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